If it's not what You are looking for type in the equation solver your own equation and let us solve it.
Simplifying 6w2 + w + 1 = 0 Reorder the terms: 1 + w + 6w2 = 0 Solving 1 + w + 6w2 = 0 Solving for variable 'w'. Begin completing the square. Divide all terms by 6 the coefficient of the squared term: Divide each side by '6'. 0.1666666667 + 0.1666666667w + w2 = 0 Move the constant term to the right: Add '-0.1666666667' to each side of the equation. 0.1666666667 + 0.1666666667w + -0.1666666667 + w2 = 0 + -0.1666666667 Reorder the terms: 0.1666666667 + -0.1666666667 + 0.1666666667w + w2 = 0 + -0.1666666667 Combine like terms: 0.1666666667 + -0.1666666667 = 0.0000000000 0.0000000000 + 0.1666666667w + w2 = 0 + -0.1666666667 0.1666666667w + w2 = 0 + -0.1666666667 Combine like terms: 0 + -0.1666666667 = -0.1666666667 0.1666666667w + w2 = -0.1666666667 The w term is w. Take half its coefficient (0.5). Square it (0.25) and add it to both sides. Add '0.25' to each side of the equation. 0.1666666667w + 0.25 + w2 = -0.1666666667 + 0.25 Reorder the terms: 0.25 + 0.1666666667w + w2 = -0.1666666667 + 0.25 Combine like terms: -0.1666666667 + 0.25 = 0.0833333333 0.25 + 0.1666666667w + w2 = 0.0833333333 Factor a perfect square on the left side: (w + 0.5)(w + 0.5) = 0.0833333333 Calculate the square root of the right side: 0.288675135 Break this problem into two subproblems by setting (w + 0.5) equal to 0.288675135 and -0.288675135.Subproblem 1
w + 0.5 = 0.288675135 Simplifying w + 0.5 = 0.288675135 Reorder the terms: 0.5 + w = 0.288675135 Solving 0.5 + w = 0.288675135 Solving for variable 'w'. Move all terms containing w to the left, all other terms to the right. Add '-0.5' to each side of the equation. 0.5 + -0.5 + w = 0.288675135 + -0.5 Combine like terms: 0.5 + -0.5 = 0.0 0.0 + w = 0.288675135 + -0.5 w = 0.288675135 + -0.5 Combine like terms: 0.288675135 + -0.5 = -0.211324865 w = -0.211324865 Simplifying w = -0.211324865Subproblem 2
w + 0.5 = -0.288675135 Simplifying w + 0.5 = -0.288675135 Reorder the terms: 0.5 + w = -0.288675135 Solving 0.5 + w = -0.288675135 Solving for variable 'w'. Move all terms containing w to the left, all other terms to the right. Add '-0.5' to each side of the equation. 0.5 + -0.5 + w = -0.288675135 + -0.5 Combine like terms: 0.5 + -0.5 = 0.0 0.0 + w = -0.288675135 + -0.5 w = -0.288675135 + -0.5 Combine like terms: -0.288675135 + -0.5 = -0.788675135 w = -0.788675135 Simplifying w = -0.788675135Solution
The solution to the problem is based on the solutions from the subproblems. w = {-0.211324865, -0.788675135}
| 20+4(2x-5)=14x+12 | | 3x-cx=5x | | -5x+3-4x=-24 | | x(x-7)=x-29 | | 121-5x=5x+11 | | 122-5x=4x+14 | | 3c-xc=5c | | n^2-m-6=0 | | (7x+1)-(6x+3)=5 | | 2x+28=9x-49 | | m^2+3m-4=0 | | 10x-23=6x-1 | | 2x+2x-3x=1+3 | | 2e-6=2-2e | | 22y=7(3y-5) | | 4=-7x+5x+4 | | 9x^2+25-8=0 | | 5x+38=15x+4 | | x/x-3=12 | | 2x^2-3x=-4 | | (X^2+7x-18+4x-8)x= | | 15-20x^2=0 | | 6v(13v+7)=0 | | 10n+9=99 | | y=3x^2+10x+8 | | 2x^2+4=30 | | x/x-3=11 | | 9(x-1)=4(2x-3) | | 3(x+2)+1=2x+10 | | 27x^4y^2+72x^2y+48= | | 3(x+2)+=2x+10 | | 3(2x-4)=2(2x+1) |